Ascend FD-23R Manual do Utilizador Página 25

  • Descarregar
  • Adicionar aos meus manuais
  • Imprimir
  • Página
    / 81
  • Índice
  • MARCADORES
  • Avaliado. / 5. Com base em avaliações de clientes
Vista de página 24
1.4. FD Constraints 13
Type declaration:
sum :: [int] (int int bool) int bool
Definition: sum L Op V is true if the sum of all elements in L is related with
V via the relational operator Op. i.e., if Σ
eL
Op V .
Example at the TOY(FD) command level:
Next goal returns true and constrains X, Y and Z to be 1.
TOY(FD)> L == [X,Y,Z], domain L 1 3, sum L (#<) 4
yes
L == [ 1, 1, 1 ]
Z == 1
Y == 1
X == 1
Elapsed time: 0 ms.
scalar product/4
Type declaration:
scalar product :: [int] [int] (int int bool) int bool
Definition: ’scalar product L1 L2 Op V’ is true if the scalar product (in the
sense of FD constraint solving) of the integers or FD variables in L1 and L2 is
related with the value V via the operator Op, i.e., if ’(L1
s
L2) Op V’ is satisfied
is satisfied with
s
defined as the usual scalar product of integer vectors.
Example at the TOY(FD) command level:
TOY(FD)> domain [X,Y,Z] 1 10, scalar_product [1,2,3] [X,Y,Z] (#<) 10
yes
Z in 1..2
Y in 1..2
X in 1..4
Elapsed time: 0 ms.
As expected, the expressions constructed from both arithmetic and relational con-
straints may be non-linear.
1.4.5 Combinatorial Constraints
Combinatorial Constraints include well-known global constraints that are useful to
solve problems defined on discrete domains. Often, these constraints are also called
symbolic constraints Beldiceanu, 2000.
assignment/2
Vista de página 24
1 2 ... 20 21 22 23 24 25 26 27 28 29 30 ... 80 81

Comentários a estes Manuais

Sem comentários